THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5210 Discrete Mathematics 2017-2018 Suggested Solution to Midterm Examination

- 1. Define a relation \sim on R such that $x \sim y$ if and only if $x y$ is an integer.
	- (a) Show that the relation \sim is an equivalence relation.
	- (b) Let $x, y, x', y' \in \mathbb{R}$. Show that if $x \sim x'$ and $y \sim y'$, then $x + y \sim x' + y'$.
	- (c) Let $x, y, x', y' \in \mathbb{R}$. If $x \sim x'$ and $y \sim y'$, is it always true that $xy \sim x'y'$? Why?

Ans:

- (a) i. (Reflexive) Let $x \in \mathbb{R}$. Then, $x x = 0$ which is an integer and so $x \sim x$.
	- ii. (Symmetric) Let $x, y \in \mathbb{R}$ such that $x \sim y$. Then $x - y$ is an integer, so $y - x = -(x - y)$ is also an integer and we have $y \sim x$.
	- iii. (Transitive) Let $x, y, z \in \mathbb{R}$ such that $x \sim y$ and $y \sim z$. Then $x - y$ and $y - z$ are integers, so $x - z = (x - y) + (y - z)$ is also an integer and we have $x \sim z$.

Therefore, \sim is an equivalence relation on R.

- (b) Let $x, y, x', y' \in \mathbb{R}$ such that $x \sim x'$ and $y \sim y'$. Then $x x'$ and $y y'$ are integers. Therefore, $(x+y)-(x'+y')=(x-x')+(y-y')$ is also an integer and we have $x+y \sim x'+y'$.
- (c) No. If $x = 0.5$, $x' = 1.5$, $y = 0.2$ and $y' = 1.2$, then we have $x \sim x'$ and $y \sim y'$ but $xy - x'y' = 0.1 - 1.8 = -1.7$ which is not an integer.
- 2. Let $f, g: \mathbb{Z}^+ \to \mathbb{R}$ be two functions.
	- (a) State the definition of $f(n) = O(q(n)).$
	- (b) Suppose that $f(n) = O(g(n))$. Show that for every positive integer k, $[f(n)]^k = O([g(n)]^k)$.

Ans:

- (a) $f(n) = O(g(n))$ if there exist $C > 0$ and $K \in \mathbb{Z}^+$ such that $|f(n)| \leq C|g(n)|$ for all $n \geq K$.
- (b) Suppose that $f(n) = O(g(n))$. Then there exist $C > 0$ and $K \in \mathbb{Z}^+$ such that $|f(n)| \leq C|g(n)|$ for all $n \geq K$. For any positive integer k and $n \geq K$, we have

$$
||[f(n)]k|| = |f(n)|k
$$

\n
$$
\leq (C|g(n)|)^{k}
$$

\n
$$
= Ck |[g(n)]k
$$

|

and so $[f(n)]^k = O([g(n)]^k)$.

- 3. Let a, b, c, n be integers. Prove that
	- (a) if $a \mid bc$ and $gcd(a, b) = 1$, then $a \mid c$.
	- (b) if $a | n$ and $b | n$ with $gcd(a, b) = 1$, then $ab | n$.

Ans:

(a) Since $a \mid bc, bc = am$ for some integer m.

Since $gcd(a, b) = 1$, there exist integers r and s such that $ar + bs = 1$. Then,

$$
c = acr + bcs
$$

$$
= acr + ams
$$

$$
= a(cr + ms)
$$

where $cr + ms$ is an integer. Therefore, $a \mid c$.

- (b) Since $b | n, n = bq$ for some integer q. Then $a | n = bq$ with $gcd(a, b) = 1$. By (a), we have $a | q$, i.e. $q = ar$ for some integer r. We have $n = bq = abr$ and so ab | n.
- 4. (a) Prove that a positive integer n is divisible by 9 if and only if the sum of the digits of n is divisible by 9.
	- (b) By using (a), determine whether 12345678987654321 is divisible by 9.

Ans:

(a) Let $n = a_k \times 10^k + a_{k-1} \times 10^{k-1} + \cdots + a_1 \times 10 + a_0$. Since $10 \equiv 1 \pmod{9}$, $10^r \equiv 1^r \equiv 1 \pmod{9}$ for all positive integer r . Then,

$$
n \equiv a_k \times 10^k + a_{k-1} \times 10^{k-1} + \dots + a_1 \times 10 + a_0 \pmod{9}
$$

\n
$$
\equiv a_k \times 1 + a_{k-1} \times 1 + \dots + a_1 \times 1 + a_0 \pmod{9}
$$

\n
$$
\equiv a_k + a_{k-1} + \dots + a_1 + a_0 \pmod{9}
$$

and so n is divisible by 9 if and only if the sum of the digits of n is divisible by 9.

- (b) Sum of the digits of the given number is 81 which is divisible by 9, therefore the given number is also divisible by 9.
- 5. Use Pohlig-Hellman algorithm, Baby Step, Giant Step or the Index Calculus to find an integer x such that $3^x \equiv 25 \pmod{29}$.

Ans:

 $x=20.$

- 6. Let E be the elliptic curve given by the equation $y^2 \equiv x^3 + x + 6 \pmod{11}$. Find
	- (a) $(2, 4) + (2, 7);$
	- (b) $(2, 4) + (3, 5);$
	- (c) $2(2, 4)$.

Ans:

(a) ∞

- (b) (7, 2)
- (c) $(5, 9)$
- 7. (a) Prove that a subgroup of a cyclic group is also cyclic.
	- (b) i. What is the order of the group $(\mathbb{Z}/120\mathbb{Z})^{\times}$? ii. Find the inverse of 23 in $(\mathbb{Z}/120\mathbb{Z})^{\times}$.

iii. By considering the subgroup $\{1, 11, 19, 89\}$ of $(\mathbb{Z}/120\mathbb{Z})^{\times}$, determine whether $(\mathbb{Z}/120\mathbb{Z})^{\times}$ is a cyclic group.

Ans:

(a) Let G be a cyclic group. Then all the elements of G is of the form a^n for some integer n. Let H be a subgroup of G. If H is the trivial group, then H is already a cyclic subgroup. Otherwise, note that if $a^n \in H$, then $a^{-n} \in H$, so H must contain an element a^n for some positive integer n.

Therefore, we let d be the least positive integer such that $a^d \in H$ and we claim every element of H is of the form a^{md} for some integer m.

Suppose the contrary, there exists an integer s such that s is not a multiple of d but $a^s \in H$. Then by division algorithm, there exist integer q and r with $0 < r < d$ such that $s = dq + r$. Since a^s and a^d are elements in H, $a^r = a^{s-dq}$ is also an element in H which contradicts to that d is the least positive integer such that $a^d \in H$. Therefore, $H = \langle a^d \rangle$, i.e. H is cyclic.

- (b) i. The order of the group $(\mathbb{Z}/120\mathbb{Z})^{\times} = \varphi(120) = \varphi(8) \times \varphi(3) \times \varphi(5) = 4 \times 2 \times 4 = 32$.
	- ii. By extended Euclidean algorithm, we have $1 = 23 \times 47 + 120 \times (-9)$, and so $23 \times 47 \equiv$ 1 (mod 120). Therefore, $23^{-1} = 47$.
	- iii. Note that $11^2 \equiv 121 \equiv 1$, $19^2 \equiv 361 \equiv 1$ and $89^2 \equiv 7921 \equiv 1$ mod 120. Therefore, every element except 1 of the given subgroup is of order 2, which is not a primitive element. Therefore, the given subgroup is not a cyclic subgroup. By (a), $(\mathbb{Z}/120\mathbb{Z})^{\times}$ is not a cyclic group.
- 8. The RSA Algorithm:
	- (1) Bob chooses secret primes p and q and compute $n = pq$.
	- (2) Bob chooses e with $gcd(e,(p-1)(q-1)) = 1$.
	- (3) Bob computes d with $de \equiv 1 \pmod{p-1}(q-1)$.
	- (4) Bob publishes the public key (n, e) , and keeps p, q, d secret.
	- (5) Alice encrptys the message m as $c \equiv m^e \pmod{n}$ and sends c to Bob.
	- (6) Bob decrypts by computing $m \equiv c^d \pmod{n}$.

Suppose that the RSA algorithm is implemented with $n = 391$.

(a) Suppose that the ciphertext $c = 20$ was obtained while $e = 29$. Using the factorization $391 = 17 \times 23$, find the messgae m. You may use the following table:

> j 0 1 2 4 8 16 32 64 128 256 $20^j \pmod{391}$ 1 20 9 81 305 358 307 18 324 188

(b) Suppose that a message $0 \le m < 391$ is encrypted twice with the RSA algorithm using $e = 37$ and $e' = 91$ and the ciphertexts are $c \equiv m^e \equiv 359 \pmod{391}$ and $c' \equiv m^{e'} \equiv 366 \pmod{391}$. By considering the fact that $gcd(e, e') = gcd(37, 91) = 1$, find the message m. You may use the fact that $359^{32} \equiv 18 \pmod{391}$ and $366^{-13} \equiv 270 \pmod{391}$.

Ans:

(a) Let $p = 17$ and $q = 23$, then $(p - 1)(q - 1) = 16 * 22 = 352$.

Note that $gcd(e,(p-1)(q-1)) = gcd(29,352) = 1$, by extended Euclidean algorithm, we have $1 = 352 \times (-7) + 29 \times 85$. Therefore, the equation $de \equiv 1 \pmod{(p-1)(q-1)}$ gives $d \equiv 85 \pmod{352}$.

Then, we have $m \equiv c^d \equiv 20^{85} \equiv 362 \pmod{391}$

(b) Note that $gcd(e, e') = gcd(37, 91) = 1$, by extended Euclidean algorithm, we have $1 = 37 \times$ $32 + 91 \times (-13)$. Then,

$$
m \equiv m^1 \equiv (m^e)^{32} \cdot (m^{e'})^{-13} \equiv c^{32} \cdot (c')^{-13} \equiv 359^{32} \times 366^{-13} \equiv 18 \times 270 \equiv 168 \pmod{391}
$$

9. (a) Let p be a prime and let α be an integer such that $1 \leq \alpha \leq p-1$.

Suppose that $p-1$ can be factorized as \prod^m $\frac{i=1}{i}$ $p_i^{d_i}$ where p_i are primes and d_i are positive integers, and $N_i = \frac{p-1}{n}$ $\frac{1}{p_i}$. Prove that $\alpha^d \equiv 1 \pmod{p}$ for some $d \mid p-1$ with $1 \leq d < p-1$ if and only if $\alpha^{N_i} \equiv 1 \pmod{p}$ for some $i = 1, 2, \ldots, m$.

- (b) By using (a), show that 2 is a primitive root mod 19.
- (c) List all the primitive roots mod 19.

(Hint: From (b), $(\mathbb{Z}/19\mathbb{Z})^{\times}$ is a cyclic group and isomorphic to $\mathbb{Z}/18\mathbb{Z}$.)

Ans:

(a) (\Leftarrow) Suppose that $\alpha^{N_i} \equiv 1 \pmod{p}$ for some $1 \leq i \leq m$, since $N_i | p-1$, then the result follows.

(⇒) Suppose that $\alpha^d \equiv 1 \pmod{p}$ for some $d \mid p-1$ with $1 \leq d < p-1$. Since $d \mid p-1 = \prod_{i=1}^{m}$ $i=1$ $p_i^{d_i},$ \overline{m}

$$
d = \prod_{i=1}^{m} p_i^{k_i} \text{ where } 0 \le k_i \le d_i \text{ for } i = 1, 2, \dots, m.
$$

Also, since $d < p-1$, there must be some $1 \leq j \leq m$, such that $k_j < d_j$, i.e. $k_j \leq d_j - 1$. Therefore, we have $d | N_j$ and $\alpha^d \equiv 1 \pmod{p}$ implies $\alpha^{N_j} \equiv 1 \pmod{p}$.

(b) Note that $19 - 1 = 18 = 2 \times 3^2$. Also, we have $2^6 \equiv 64 \equiv 7 \pmod{19}$ and $2^9 \equiv 512 \equiv$ 18 (mod 19).

By (a), 2^d is not congruent to 1 for all $d | 18$ with $1 \leq d < 18$ (also note that the order of 2 must be a divisor of 18), therefore 2 is a primitive root mod 19.

(c) Note that $(\mathbb{Z}/19\mathbb{Z})^{\times}$ is a cyclic group and isomorphic to $\mathbb{Z}/18\mathbb{Z}$ and the primitive elements of $\mathbb{Z}/18\mathbb{Z}$ are those integers $1 \leq d \leq 18$ which are relatively prime with 18, and they are 1, 5, 7, 11, 13, 17.

Therefore, the primitive roots mod 19 are $2^1 \equiv 2$, $2^5 \equiv 13$, $2^7 \equiv 14$, $2^{11} \equiv 15$, $2^{13} \equiv 3$, $2^{17} \equiv 10.$